Partial covariance based functional connectivity computation using Ledoit–Wolf covariance regularization
نویسندگان
چکیده
منابع مشابه
Partial covariance based functional connectivity computation using Ledoit-Wolf covariance regularization
Functional connectivity refers to shared signals among brain regions and is typically assessed in a task free state. Functional connectivity commonly is quantified between signal pairs using Pearson correlation. However, resting-state fMRI is a multivariate process exhibiting a complicated covariance structure. Partial covariance assesses the unique variance shared between two brain regions exc...
متن کاملCovariance Regularization by Thresholding
This paper considers regularizing a covariance matrix of p variables estimated from n observations, by hard thresholding. We show that the thresholded estimate is consistent in the operator norm as long as the true covariance matrix is sparse in a suitable sense, the variables are Gaussian or sub-Gaussian, and (log p)/n→ 0, and obtain explicit rates. The results are uniform over families of cov...
متن کاملQuantitative covariance NMR by regularization.
The square root of a covariance spectrum, which offers high spectral resolution along both dimensions requiring only few t (1) increments, yields in good approximation the idealized 2D FT spectrum provided that the amount of magnetization exchanged between spins is relatively small. When this condition is violated, 2D FT and covariance peak volumes may differ. A regularization method is present...
متن کاملCovariance Estimation: The GLM and Regularization Perspectives
Finding an unconstrained and statistically interpretable reparameterization of a covariance matrix is still an open problem in statistics. Its solution is of central importance in covariance estimation, particularly in the recent high-dimensional data environment where enforcing the positive-definiteness constraint could be computationally expensive. We provide a survey of the progress made in ...
متن کاملPartial Estimation of Covariance Matrices
A classical approach to accurately estimating the covariance matrix Σ of a p-variate normal distribution is to draw a sample of size n > p and form a sample covariance matrix. However, many modern applications operate with much smaller sample sizes, thus calling for estimation guarantees in the regime n p. We show that a sample of size n = O(m log p) is sufficient to accurately estimate in oper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: NeuroImage
سال: 2015
ISSN: 1053-8119
DOI: 10.1016/j.neuroimage.2015.07.039